
A Quantitative Analysis of Kalman-Filter based
Visual SLAM systems

Sougato Bagchi
University at Buffalo, USA
sougatob@buffalo.edu

Abstract—With the ever-increasing applications of autonomous
robots, there remains a fundamental problem that needs to
optimize, i.e. how do these machines create a map of their
surroundings and localize themselves in it in real-time and
efficiently? This is known as SLAM (Simultaneous Localization
Mapping). Here I will explain the Kalman-Filter Based SLAM
systems by taking [1]OPENVINS as an example.

Index Terms—SLAM, Extended Kalman-Filter, MSCKF, com-
puter vision

I. INTRODUCTION

The use of different probabilistic filters in the field SLAM is
common and it’s due to the fact that When these are deployed
in real-life, in most cases the environments are generally
unpredictable and dynamic.

Most robots depend on 2 important components for naviga-
tion, and these are:-

• Sensors
• Actuators(involves motors)

Each of these components incurs errors over the course of
time. For this reason, we implement the backbone for local-
ization using the Bayes-Filter or some modified versions for
better performance. Many SLAM systems use methods other
than the Bayes Filter, but there is a significant advantage to
these filter-based systems. Some are:-

• lower time complexity
• can be deployed in resource-constrained hardware
• hybrid filter-based SLAM systems have a very less ATE

accuracy trade-off
From a theoretical aspect, we have bel(xt−1), ut, and the zt
of the robot for each and every time, these translate to the
belief of the state variable at time t− 1, control data at time t
and sensor data at time t respectively. So our objective here is
to calculate the bel(xt). Also when we apply our algorithms
in real world scenarios then we need to calculate the z

(j)
i and

this is done using equation 1

z
(j)
i =

1
CiZj

[
CiXj
CiYj

]
+ n

(j)
i (1)

Cipfj =

[
CiXj

CiYj
CiZj

]
(2)

In equ 1 i = 1...n; no. of cameras and equ 2 denotes Feature
position in the camera Ci frame.

OpenVins deploys a hybrid architecture to overcome the
fundamental restrictions for the Bayes filter and improves the

accuracy in estimating the bel(xt). It uses the [2]MSCKF and
EKF(Extended Kalman Filter) for different tracked features in
different situations.

A. Reason for the Hybrid Implementation

From the time complexity and the behavior of both the
algorithms (i.e., MSCKF and the EFK) explained later, we
know that when the no. of features is huge but they have
been tracked in a few images/frames then MSCKF is a good
choice for execution. But when we have few features and they
have already been tracked in many frames its better to execute
a less costly algorithm like the EKF (its be susceptible to
linearization errors, but as these features has been tracked for
too long, they have good estimates).

Each and every tracked feature has a different length (no. of
frames it has been tracked). Here the algorithm tracks a feature
over 11 frames, and it captures a maximum of 100 features
per frame using optical flow. Ultimately it keeps 50 landmarks
in the state, where we can say that a feature translates to a
landmark only when it has been tracked in a minimum of 11
frames.

Here which module (EKF or the MSCKF) will be executed
for the features depends on the threshold m

• If feature i’s track is lost after fewer than m frames (i.e.,
l < m), then the feature is processed using the MSCKF
equations.

• If a feature is still actively being tracked after m images,
it is initialized into the state vector, and used for SLAM

This hybrid method helps in reducing the time complexity with
optimized estimation. This hybrid method of OPENVINS has
been inspired by [3]Li, Mingyang, and Anastasios I. Mourikis.
So in simpler terms when a feature gets tracked for the 1st
time, The MSCKF algorithm is executed on it till the no of
times it has been tracked doesn’t cross the threshold m, and
when it crosses that then the EKF takes the responsibility.
After the execution of the EKF, these features from the state
vector are designated as SLAM features and the rest are
designated as MSCKF fearures. These MSCKF features are
basically one those are discarded from being used in the
OPENVINS slam system, but if these MSCKF features crosses
the threshold in the future then they can be designated as
SLAM features.

B. Select the optimal value of m

• Example :- Let’s say the sliding window length m = 20,
no of features = 10 & they have been tracked in 20
images.

• Now there are 2 possibilities:-
– increasing the size of the sliding window or
– Include these 10 features in the state vector.

• This depends on the future behavior of the features. How?
– if these features end up being tracked for a very

large number of frames (>> 20), then it would be
preferable to include the features in the state vector.

– If, on the other hand, the features end up being
tracked for only 21 frames, it would be preferable
to increase m by one.

C. How do we obtain future info?

• During the filter’s operation we learn the probability mass
function (pmf) of the

– feature track lengths p(li)
– probability of failure of the Mahalanobis gating test
– pmf of the number of features tracked in the images

• Using the learned pmfs, we compute the average number
of operations needed for each EKF update. f(m)

• The learning of the pmfs as well as the selection of the
optimal threshold in consecutive time windows spanning
a few seconds (15 sec in the [3]paper’s implementation)

II. EXTENDED KALMAN FILTER
1. Algorithm Extended Kalman Filter (µt,

∑
t, ut, zt):

2. µt = g(ut, µt−1)
3.

∑
t = Gt

∑
t−1 G

T
t +Rt

4. Kt =
∑

tH
T
t (Ht

∑
tH

T
t +Qt)

−1
5. µt =µt +Kt(zt − h(µt))
6.

∑
t = (I −KtHt)

∑
t

7. return µt,
∑

t

In this algorithm µt,
∑

t makes up for bel(xt−1. Line 2
and 3 calculates the bel(xt) before incorporating zt This is
a modified version of the Kalman filter which itself is based
on the Bayes filter. Here the nonlinearity of the observations
and the next state is considered. So here the state transition
variable xt is a function of xt−1 and similarly the measurement
variable zt is also a function of zt−1

xt = g(ut, xt−1) + ϵt (3)

zt = h(xt) + δt (4)

The EKF handles all the shortcomings of the Naive KF, by
implementing linearization. So the accuracy in the estimation
depends on how well we linearize the required variables and
also on the prior and other input data.

A. Time Complexity
The time complexity of a typical Kalman Filter is O(K2.4+

n2), where K denotes the dimension of the z vector and n
denotes the state vector xt.

III. MULTI-STATE CONSTRAINT KALMAN FILTER

The MSCKF is the backbone of the OPENVINS as this
algorithm poses some unique advantages.

• zt (measurement model) is able to express the geometric
constraints(like, features found in both left & right camera
images for OpenVins & in the stereo system) that arise
when a static feature is observed from multiple camera
poses. This also helps in attaining higher estimation
accuracy.

• Reduced time complexity.

A. MSCKF as published by the authors of [2]
Algorithm MSCKF
Propagation: For each IMU measurement received, propa-

gate the filter state and covariance.
Image registration: Every time a new image is recorded,
• augment the state and covariance matrix with a copy of

the current camera pose estimate
• image processing module begins operation
Update: When the feature measurements of a given image

become available, perform an EKF update.

The Propagation adjusts the XIMU w.r.t different control
inputs. The Image registration module deals with Detecting
features from the incoming camera images and also due to the
unavailability of zt, it is derived from the camera poses per
tracked feature. During the execution of the Update module,
we have our ut, zt, & Xt−1

IMU and so we are ready to calculate
the EKF update.

B. Modified MSCKF algorithm as published by the authors of
[3]

Hybrid MSCKF/SLAM algorithm
Propagation: For each IMU measurement received, prop-

agate the filter state and covariance. Update: Once camera
measurements become available:

• Augment the state vector with the latest camera pose.
• For features to be processed in the MSCKF (feature tracks

of length smaller than m), do the following
– Calculate the residual and the Jacobian matrix for

each an every feature to be processed.
– Perform the Mahalanobis gating test
– Using all features that passed the gating test, form

the residual vector and the Jacobian matrix
• For features that are included in the state vector, compute

the residuals and measurement Jacobian matrices, and
form the residual z̃k and matrix Hk

• Update the state vector and covariance matrix, using z̃k
and matrix Hk

• Initialize features tracked in all m images of the sliding
window.

State Management:
• Remove SLAM features that are no longer tracked, and

change the anchor pose for SLAM features anchored at
the oldest pose.

• Remove the oldest camera pose from the state vector. If
no feature is currently tracked for more than mo poses
(with mo < m− 1), remove the oldest m−mo poses.

C. Analysis of the Time Complexity for the modified MSCKF
as implemented in [3]

• We have features, with feature track lengths li, i = 1....n
• The ”computation of the residual z & the Jacobian

Matrix(H) takes O(
∑n

i=1 l
3
i) operations

• Mahalanobis test, (calculated for each frame), for select-
ing the residuals take O(

∑n
i=1 l

3
i) operations

• Similarly the QR Factorization (of H), to solve the linear
least squares problem & then calculate z̃r for updates take
O(

∑n
i=1 l

3
i) operations

• So all of the above listed steps depends linearly w.r.t the
no. of features and also with the track length cubed.

• The last step consists of calculating the Kalman Gain &
updating the covariance matrix. The time complexity is
O(r

3

6 + r(15+6m)2). Here r denotes the no. of rows in
Hr(no. of independent constraints for the camera poses)
and it can be derived by using r = 2(l1 + l2 + l3) − 7,
where (l1 + l2 + l3) denotes 3 longest feature tracks.
(15 + 6m) denotes the size of the covariance matrix.

Fig. 1. Monte-Carlo simulation results: Timing performance and RMS
position accuracy of the hybrid filter, for changing values of m. Timing
measured on a laptop computer. [3]Img src.

IV. EVALUATION

A. Evaluation based on Euroc V1 01 easy (58m long)
Modules Min Avg Max

Tracking 2.54 4 11.19
Propagation 0.1 0.25 1.41

MSCKF Update 0 1.4 22.45
SLAM Update 0 6.19 14.6
SLAM delayed 0 1.2 22.3
re-tri & marg 0.2 0.84 4.49

Total 4.32 14 45.59

Time taken by different modules at incoming frequency of images 20Hz

B. Evaluation based on Euroc V1 01 easy (lab VM) (58m
long)

Modules Min Avg Max

Tracking 2.29 7 32.98
Propagation 0 0.21 2.86

MSCKF Update 0 1.156 16.4
SLAM Update 0 3.55 11.78
SLAM delayed 0 1.7 27.92
re-tri & marg 0.2 0.6 4.44

Total 3.9 14.37 50.61

Time taken by different modules at incoming frequency of images 100Hz
ATE : 0.055

Modules Min Avg Max

Tracking 2.28 4 20
Propagation 0 0.18 1.52

MSCKF Update 0 1.2 16.93
SLAM Update 0 5.3 9.5
SLAM delayed 0 1.01 21
re-tri & marg 0.2 0.56 1.84

Total 4.96 12.4 37.07

Time taken by different modules at incoming frequency of images 20Hz
ATE : 0.046

C. Evaluation based on TUM VI room1 (lab VM) (147m
long)

Modules Min Avg Max

Tracking 2.48 5.8 35.83
Propagation 0 0.164 2.12

MSCKF Update 0 1.1 12.91
SLAM Update 0 2.054 10.65
SLAM delayed 0 1.47 14.91
re-tri & marg 0.27 0.6 6.85

Total 3.66 11.26 44.03

Time taken by different modules at incoming frequency of images 100Hz
ATE : 0.066

Modules Min Avg Max

Tracking 2.28 4.39 20.85
Propagation 0 0.1557 3.25

MSCKF Update 0 1.07 14.67
SLAM Update 0 2.65 8.74
SLAM delayed 0 1.42 26.69
re-tri & marg 0.2 0.524 1.71

Total 4.96 10.23 32.65

Time taken by different modules at incoming frequency of images 20Hz
ATE : 0.06

V. CONCLUSION AND FUTURE WORK
From our evaluation results we can conclude that the OpenVINS is

performing fairly when it’s fed with incoming image streams with original
frequency i.e., 20hz. So we have tried to increase the incoming image
frequency to the point where it breaks like 100hz, still its working well
enough with a slight drop in ATE. In my present experimentation with
these 2 datasets (EUROC & TUM VI) its seems like OPENVINS is a fairly
competitive model w.r.t. other full-SLAM models like the ORBSLAM. But
I am yet to see the performance of OPENVINS in longer datasets like the
KITTI, which has trajectory lengths in kms.

From my experimentation I have checked that the OPENVINS doesn’t face
many of the problems that the other full-slam system does, like concurrency.
This is due to the fact that this system doesn’t implement many of the steps
like the creation of the map, loop closure, global bundle adjustments which

are costly to execute. Its a fairly simple architecture with the Hybrid-MSCKF
being the backbone. And one of the most costly steps in the whole system is
the Tracking, other modules are more or less either the feature update in the
state variable and propagating those features in the present timeframe.

REFERENCES

[1] Geneva, Patrick, et al. ”Openvins: A research platform for visual-
inertial estimation.” 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020.

[2] Mourikis, Anastasios I., and Stergios I. Roumeliotis. ”A Multi-State
Constraint Kalman Filter for Vision-aided Inertial Navigation.” ICRA.
Vol. 2. 2007.

[3] Li, Mingyang, and Anastasios I. Mourikis. ”Optimization-based estima-
tor design for vision-aided inertial navigation.” Robotics: Science and
Systems. Germany: Berlin, 2013.

